MEK 억제제 (MEK Inhibitors)

MEK is a member of kinases in MAPK signal pathway which can activates p38 MAPK and JNK when MEK is ACTIVATED by TNF-alpha, GPCR and so on. MEK could be regulated by MEKKs or RAF. The Raf / MEK / ERK signal transduction is involved in cell growth, cell proliferation and cell survival.  [show the full text]

아이소폼 선택적 제품

Cat.No. 제품명 정보 제품 사용 인용 제품 검증
S2673 Trametinib (GSK1120212) Trametinib (GSK1120212, JTP-74057)는 세포 유리 분석에서 0.92 nM/1.8 nM의 IC50을 갖는 고도로 특이적이고 강력한 MEK1/2 억제제이며, c-Raf, B-Raf, ERK1/2의 키나제 활성을 억제하지 않습니다. 이 화합물은 autophagy를 활성화하고 apoptosis를 유도합니다.
Cancer Cell, 2025, S1535-6108(25)00271-5
Signal Transduct Target Ther, 2025, 10(1):161
Signal Transduct Target Ther, 2025, 10(1):299
Verified customer review of Trametinib (GSK1120212)
S1036 PD0325901 (Mirdametinib) 미르다메티닙(PD0325901)은 세포 없는 분석에서 0.33 nM의 IC50을 갖는 선택적이며 비 ATP 경쟁적 MEK 억제제로, ERK1 및 ERK2의 인산화에 대해 CI-1040보다 약 500배 더 강력합니다. 2상.
Nature, 2025, 10.1038/s41586-025-09328-w
Nature, 2025, 10.1038/s41586-025-09571-1
Cell, 2025, S0092-8674(25)00807-4
Verified customer review of PD0325901 (Mirdametinib)
S1008 AZD6244 (Selumetinib) 셀루메티닙 (AZD6244, ARRY-142886)은 MEK1에 대해 14 nM의 IC50과 MEK2에 대해 530 nM의 Kd 값을 갖는 강력하고 고도로 선택적인 MEK 억제제입니다. 또한 10 nM의 IC50으로 ERK1/2 인산화를 억제하며, p38α, MKK6, EGFR, ErbB2, ERK2, B-Raf 등에는 억제 효과가 없습니다. 셀루메티닙은 세포 증식, 이동을 억제하고 apoptosis를 유발합니다. 3상.
Nat Commun, 2025, 16(1):4884
Cell Rep Med, 2025, S2666-3791(25)00102-8
Cell Rep, 2025, 44(6):115774
Verified customer review of AZD6244 (Selumetinib)
S8041 Cobimetinib (GDC-0973) Cobimetinib (GDC-0973, RG7420)은 IC50이 4.2 nM인 강력하고 고도로 선택적인 MEK1 억제제로, 100개 이상의 세린-트레오닌 및 티로신 키나아제 패널에 대해 테스트했을 때 유의미한 억제를 보이지 않았습니다. 이 화합물은 apoptosis를 유도합니다. 3상.
Cancer Cell, 2025, 43(3):482-502.e9
Hepatology, 2025, 10.1097/HEP.0000000000001439
Cancer Res, 2025, 10.1158/0008-5472.CAN-24-3819
Verified customer review of Cobimetinib (GDC-0973)
S7170 Avutometinib (Ro5126766, CH5126766) Avutometinib(RO5126766,CH5126766,VS 6766, CKI-27, R-7304, RG-7304)는 BRAF V600E, BRAF, CRAF 및 MEK1에 대해 각각 8.2 nM, 19 nM, 56 nM 및 160 nM의 IC50를 갖는 이중 RAF/MEK 억제제입니다. 1상.
Cancer Chemother Pharmacol, 2025, 95(1):78
Nat Biomed Eng, 2024, 10.1038/s41551-024-01273-9
Cell Rep Med, 2024, 5(11):101818
S1102 U0126-EtOH U0126-EtOH는 무세포 분석에서 0.07 μM/0.06 μM의 IC50을 갖는 MEK1/2의 고도로 선택적인 억제제이며, PD98059보다 ΔN3-S218E/S222D MEK에 대해 100배 더 높은 친화성을 가집니다. U0126은 항바이러스 활성과 함께 autophagymitophagy를 억제합니다.
Nat Commun, 2025, 16(1):2192
Nat Commun, 2025, 16(1):7156
Adv Sci (Weinh), 2025, 12(44):e11726
Verified customer review of U0126-EtOH
S1177 PD 98059 PD98059는 세포 없는 분석에서 IC50이 2 μM인 비-ATP 경쟁적 MEK 억제제로, MEK-1 매개 MAPK 활성화를 특이적으로 억제합니다. ERK1 또는 ERK2를 직접 억제하지 않습니다. PD98059는 아릴 탄화수소 수용체(AHR)의 리간드이며 AHR 길항제로 기능합니다.
Nat Commun, 2025, 16(1):212
Adv Sci (Weinh), 2025, 12(28):e2502634
Theranostics, 2025, 15(6):2624-2648
Verified customer review of PD 98059
S1020 PD184352 (CI-1040) PD184352 (CI-1040)는 세포 기반 분석에서 17 nM의 IC50을 갖는 ATP 비경쟁적 MEK1/2 억제제이며, MEK5보다 MEK1/2에 대해 100배 더 선택적입니다. 이 화합물은 선택적으로 apoptosis를 유도합니다.
Cell Host Microbe, 2025, 33(4):512-528.e7
Int J Mol Sci, 2025, 26(8)3536
Front Cell Dev Biol, 2025, 13:1601887
Verified customer review of PD184352 (CI-1040)
S7007 MEK162 (Binimetinib, ARRY-162) Binimetinib (MEK162, ARRY-162, ARRY-438162)는 세포 유리 분석에서 12 nM의 IC50을 갖는 강력한 MEK1/2 억제제입니다. Binimetinib은 인간 NSCLC 세포주에서 G1 세포 주기 정지 및 apoptosis를 유도하고 autophagy를 유도합니다. 3상.
Cell Rep Med, 2025, 6(2):101943
Cell Syst, 2025, 16(3):101229
Biochem Pharmacol, 2025, 235:116842
Verified customer review of MEK162 (Binimetinib, ARRY-162)
S1531 BIX 02189 BIX02189는 MEK5의 선택적 억제제로 IC50이 1.5 nM이며, 무세포 분석에서 ERK5 촉매 활성을 IC50 59 nM로 억제하고, 밀접하게 관련된 키나아제인 MEK1, MEK2, ERK2 및 JNK2는 억제하지 않습니다.
PLoS One, 2024, 19(1):e0295629
Nat Commun, 2023, 10.1038/s41467-023-43369-x
Exp Mol Med, 2023, 55(6):1247-1257
Verified customer review of BIX 02189

In the mitogen-activated protein kinase (MAPK) pathway, receptor tyrosine kinase activation results in adaptor proteins phosphorylating RAS. This results in the activation of the RAF-MEK-ERK kinase signalling pathway, and consequently leads to the activation of several downstream substrates that affect a number of transcription factors. The knock-on effect is that a myriad of cellular processes such as cell proliferation, survival, transformation, translational control and cytoskeletal rearrangement. In oncology, the MAPK pathway is a key contributor to tumor progression, angiogenesis, and metastasis.

In the RAS-RAF-MEK-ERK pathway, MEK has been the target of oncology research. The MEK kinase is expressed from MEK1 and MEK2 – two genes that share ~80% structural homology – that display slightly different isoforms of MEK to produce potentially different functions. Both MEK1 and MEK2 kinases are implicated in ~30% of all human cancers where MAPK signalling pathway is involved.[1] These dual-specificity kinases phosphorylate both tyrosine and threonine residues; MEK1 and MEK2 sequentially phosphorylate ERK1 at 185Tyr and then at 183Thr. MEK exists just downstream of RAF in the classical MAPK pathway known as RAS-RAF-MEK-ERK pathway. Phosphorylation of MEK by RAF results in the phosphorylation of ERK1 and ERK2. MEK kinases show very high specificity for ERK, in fact it is the only known substrate for MEK. Therefore, constitutive phosphorylation of MEK in the RAF-MEK-ERK kinase pathway occurs by either the overexpression or mutation of receptor tyrosine kinases, and/or mutations of RAS and RAF (A-RAF and B-RAF).[2]

The MEK enzyme itself consists of hydrophobic allosteric pockets adjacent to the ATP-binding site that facilitates the design of highly selective allosteric inhibitors. This is in contRASt to the many kinases for which there is no allosteric-binding site. Consequently, this feature is recognized by many pharmaceutical companies as a characteristic that facilitates more selective inhibitor design since the more conserved ATP-binding site is not directly targeted. MEK1 and MEK2 are positioned at the focal point of many mitogenic signaling pathways that integrates into the ERK pathway. Characteristics such as unusually restricted and unique substrate specificities, plus the integrating role of mitogenic signaling pathways demonstrates the benefits of developing a MEK inhibitor against the ERK pathway.[3]

The utility of targeting MEK inhibition is likely to be best realized among tumors where the MEK pathway is constitutively activated. Such a scenario includes activating mutations of BRAF that results in tumors that are dependent to MEK signaling, and consequently very sensitive to MEK inhibition.[4] This is likely to be the case among a sub-population of BRAF mutations observed in melanoma and thyroid cancers. Currently, MEK inhibition is likely to prove most effective when used in a combination strategy. This is because there is cross-talk involved between RAS-RAF-MEK-ERK and the PI3K-AKT pathway. As a consequence, inhibition of one pathway leads to constitutive signalling in the other. This is a reflection of the complexity of the kinase signalling pathways implicated in cancer.[2]

Aside from anti-tumor potential, MEK inhibition may play a role where inflammation is concerned. Several key protein downstream of MEK are involved in inflammatory responses including TNF, IL-1, and other cytokines. MEK signaling directly impacts both the expression of cytokines and subsequent activation pathways. Therefore, MEK inhibitors –particularly orally bioavailable compounds – may be suitable agents for the treatment of inflammatory disease. In addition, it should be noted that anaphylatoxins utilize the MEK kinase cascade to initiate disease processes such as arthritis.[2]